\(\int \frac {1}{\cos ^{\frac {7}{2}}(c+d x) (a+b \sec (c+d x))} \, dx\) [823]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [F(-1)]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 128 \[ \int \frac {1}{\cos ^{\frac {7}{2}}(c+d x) (a+b \sec (c+d x))} \, dx=\frac {2 a E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b^2 d}+\frac {2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 b d}+\frac {2 a^2 \operatorname {EllipticPi}\left (\frac {2 a}{a+b},\frac {1}{2} (c+d x),2\right )}{b^2 (a+b) d}+\frac {2 \sin (c+d x)}{3 b d \cos ^{\frac {3}{2}}(c+d x)}-\frac {2 a \sin (c+d x)}{b^2 d \sqrt {\cos (c+d x)}} \]

[Out]

2*a*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/b^2/d+2/3*(cos(1/2*d
*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/b/d+2*a^2*(cos(1/2*d*x+1/2*c)^2)^(
1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2*a/(a+b),2^(1/2))/b^2/(a+b)/d+2/3*sin(d*x+c)/b/d/cos(d*
x+c)^(3/2)-2*a*sin(d*x+c)/b^2/d/cos(d*x+c)^(1/2)

Rubi [A] (verified)

Time = 0.64 (sec) , antiderivative size = 128, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.435, Rules used = {4349, 3936, 4187, 4191, 3934, 2884, 3872, 3856, 2719, 2720} \[ \int \frac {1}{\cos ^{\frac {7}{2}}(c+d x) (a+b \sec (c+d x))} \, dx=\frac {2 a^2 \operatorname {EllipticPi}\left (\frac {2 a}{a+b},\frac {1}{2} (c+d x),2\right )}{b^2 d (a+b)}+\frac {2 a E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b^2 d}-\frac {2 a \sin (c+d x)}{b^2 d \sqrt {\cos (c+d x)}}+\frac {2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 b d}+\frac {2 \sin (c+d x)}{3 b d \cos ^{\frac {3}{2}}(c+d x)} \]

[In]

Int[1/(Cos[c + d*x]^(7/2)*(a + b*Sec[c + d*x])),x]

[Out]

(2*a*EllipticE[(c + d*x)/2, 2])/(b^2*d) + (2*EllipticF[(c + d*x)/2, 2])/(3*b*d) + (2*a^2*EllipticPi[(2*a)/(a +
 b), (c + d*x)/2, 2])/(b^2*(a + b)*d) + (2*Sin[c + d*x])/(3*b*d*Cos[c + d*x]^(3/2)) - (2*a*Sin[c + d*x])/(b^2*
d*Sqrt[Cos[c + d*x]])

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2884

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3872

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 3934

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(3/2)/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[d*Sqrt[d*S
in[e + f*x]]*Sqrt[d*Csc[e + f*x]], Int[1/(Sqrt[d*Sin[e + f*x]]*(b + a*Sin[e + f*x])), x], x] /; FreeQ[{a, b, d
, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3936

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[(-d^3)*Cot[
e + f*x]*((d*Csc[e + f*x])^(n - 3)/(b*f*(n - 2))), x] + Dist[d^3/(b*(n - 2)), Int[(d*Csc[e + f*x])^(n - 3)*(Si
mp[a*(n - 3) + b*(n - 3)*Csc[e + f*x] - a*(n - 2)*Csc[e + f*x]^2, x]/(a + b*Csc[e + f*x])), x], x] /; FreeQ[{a
, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && GtQ[n, 3]

Rule 4187

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-C)*d*Cot[e + f*x]*(a + b*Csc[e + f*x])^(
m + 1)*((d*Csc[e + f*x])^(n - 1)/(b*f*(m + n + 1))), x] + Dist[d/(b*(m + n + 1)), Int[(a + b*Csc[e + f*x])^m*(
d*Csc[e + f*x])^(n - 1)*Simp[a*C*(n - 1) + (A*b*(m + n + 1) + b*C*(m + n))*Csc[e + f*x] + (b*B*(m + n + 1) - a
*C*n)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, m}, x] && NeQ[a^2 - b^2, 0] && GtQ[n, 0]

Rule 4191

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d
_.)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))), x_Symbol] :> Dist[(A*b^2 - a*b*B + a^2*C)/(a^2*d^2), Int[(d*Csc[
e + f*x])^(3/2)/(a + b*Csc[e + f*x]), x], x] + Dist[1/a^2, Int[(a*A - (A*b - a*B)*Csc[e + f*x])/Sqrt[d*Csc[e +
 f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0]

Rule 4349

Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Csc[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[
u, x]

Rubi steps \begin{align*} \text {integral}& = \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sec ^{\frac {7}{2}}(c+d x)}{a+b \sec (c+d x)} \, dx \\ & = \frac {2 \sin (c+d x)}{3 b d \cos ^{\frac {3}{2}}(c+d x)}+\frac {\left (2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\sec (c+d x)} \left (\frac {a}{2}+\frac {1}{2} b \sec (c+d x)-\frac {3}{2} a \sec ^2(c+d x)\right )}{a+b \sec (c+d x)} \, dx}{3 b} \\ & = \frac {2 \sin (c+d x)}{3 b d \cos ^{\frac {3}{2}}(c+d x)}-\frac {2 a \sin (c+d x)}{b^2 d \sqrt {\cos (c+d x)}}+\frac {\left (4 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\frac {3 a^2}{4}+a b \sec (c+d x)+\frac {1}{4} \left (3 a^2+b^2\right ) \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} (a+b \sec (c+d x))} \, dx}{3 b^2} \\ & = \frac {2 \sin (c+d x)}{3 b d \cos ^{\frac {3}{2}}(c+d x)}-\frac {2 a \sin (c+d x)}{b^2 d \sqrt {\cos (c+d x)}}+\frac {\left (4 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\frac {3 a^3}{4}+\frac {1}{4} a^2 b \sec (c+d x)}{\sqrt {\sec (c+d x)}} \, dx}{3 a^2 b^2}+\frac {\left (a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{a+b \sec (c+d x)} \, dx}{b^2} \\ & = \frac {2 \sin (c+d x)}{3 b d \cos ^{\frac {3}{2}}(c+d x)}-\frac {2 a \sin (c+d x)}{b^2 d \sqrt {\cos (c+d x)}}+\frac {a^2 \int \frac {1}{\sqrt {\cos (c+d x)} (b+a \cos (c+d x))} \, dx}{b^2}+\frac {\left (a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx}{b^2}+\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\sec (c+d x)} \, dx}{3 b} \\ & = \frac {2 a^2 \operatorname {EllipticPi}\left (\frac {2 a}{a+b},\frac {1}{2} (c+d x),2\right )}{b^2 (a+b) d}+\frac {2 \sin (c+d x)}{3 b d \cos ^{\frac {3}{2}}(c+d x)}-\frac {2 a \sin (c+d x)}{b^2 d \sqrt {\cos (c+d x)}}+\frac {a \int \sqrt {\cos (c+d x)} \, dx}{b^2}+\frac {\int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{3 b} \\ & = \frac {2 a E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b^2 d}+\frac {2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 b d}+\frac {2 a^2 \operatorname {EllipticPi}\left (\frac {2 a}{a+b},\frac {1}{2} (c+d x),2\right )}{b^2 (a+b) d}+\frac {2 \sin (c+d x)}{3 b d \cos ^{\frac {3}{2}}(c+d x)}-\frac {2 a \sin (c+d x)}{b^2 d \sqrt {\cos (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 4.26 (sec) , antiderivative size = 210, normalized size of antiderivative = 1.64 \[ \int \frac {1}{\cos ^{\frac {7}{2}}(c+d x) (a+b \sec (c+d x))} \, dx=\frac {\frac {2 \left (9 a^2+2 b^2\right ) \operatorname {EllipticPi}\left (\frac {2 a}{a+b},\frac {1}{2} (c+d x),2\right )}{a+b}+8 b \left (2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )-\frac {2 b \operatorname {EllipticPi}\left (\frac {2 a}{a+b},\frac {1}{2} (c+d x),2\right )}{a+b}\right )+\frac {4 (b-3 a \cos (c+d x)) \sin (c+d x)}{\cos ^{\frac {3}{2}}(c+d x)}+\frac {6 \left (-2 a b E\left (\left .\arcsin \left (\sqrt {\cos (c+d x)}\right )\right |-1\right )+2 b (a+b) \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\cos (c+d x)}\right ),-1\right )+\left (a^2-2 b^2\right ) \operatorname {EllipticPi}\left (-\frac {a}{b},\arcsin \left (\sqrt {\cos (c+d x)}\right ),-1\right )\right ) \sin (c+d x)}{b \sqrt {\sin ^2(c+d x)}}}{6 b^2 d} \]

[In]

Integrate[1/(Cos[c + d*x]^(7/2)*(a + b*Sec[c + d*x])),x]

[Out]

((2*(9*a^2 + 2*b^2)*EllipticPi[(2*a)/(a + b), (c + d*x)/2, 2])/(a + b) + 8*b*(2*EllipticF[(c + d*x)/2, 2] - (2
*b*EllipticPi[(2*a)/(a + b), (c + d*x)/2, 2])/(a + b)) + (4*(b - 3*a*Cos[c + d*x])*Sin[c + d*x])/Cos[c + d*x]^
(3/2) + (6*(-2*a*b*EllipticE[ArcSin[Sqrt[Cos[c + d*x]]], -1] + 2*b*(a + b)*EllipticF[ArcSin[Sqrt[Cos[c + d*x]]
], -1] + (a^2 - 2*b^2)*EllipticPi[-(a/b), ArcSin[Sqrt[Cos[c + d*x]]], -1])*Sin[c + d*x])/(b*Sqrt[Sin[c + d*x]^
2]))/(6*b^2*d)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(422\) vs. \(2(198)=396\).

Time = 13.70 (sec) , antiderivative size = 423, normalized size of antiderivative = 3.30

method result size
default \(-\frac {\sqrt {-\left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (\frac {-\frac {\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{3 \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-\frac {1}{2}\right )^{2}}+\frac {2 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{3 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}}{b}-\frac {2 a \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\right )}{b^{2} \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )}-\frac {2 a^{3} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticPi}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \frac {2 a}{a -b}, \sqrt {2}\right )}{b^{2} \left (a^{2}-a b \right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(423\)

[In]

int(1/cos(d*x+c)^(7/2)/(a+b*sec(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2/b*(-1/6*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c
)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^2+1/3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+
1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)))-
2*a/b^2/sin(1/2*d*x+1/2*c)^2/(2*sin(1/2*d*x+1/2*c)^2-1)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(
2*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2-(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(
2*sin(1/2*d*x+1/2*c)^2-1)^(1/2))-2*a^3/b^2/(a^2-a*b)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^
(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),2*a/(a-b),2^(1/2)))/s
in(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [F(-1)]

Timed out. \[ \int \frac {1}{\cos ^{\frac {7}{2}}(c+d x) (a+b \sec (c+d x))} \, dx=\text {Timed out} \]

[In]

integrate(1/cos(d*x+c)^(7/2)/(a+b*sec(d*x+c)),x, algorithm="fricas")

[Out]

Timed out

Sympy [F(-1)]

Timed out. \[ \int \frac {1}{\cos ^{\frac {7}{2}}(c+d x) (a+b \sec (c+d x))} \, dx=\text {Timed out} \]

[In]

integrate(1/cos(d*x+c)**(7/2)/(a+b*sec(d*x+c)),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {1}{\cos ^{\frac {7}{2}}(c+d x) (a+b \sec (c+d x))} \, dx=\int { \frac {1}{{\left (b \sec \left (d x + c\right ) + a\right )} \cos \left (d x + c\right )^{\frac {7}{2}}} \,d x } \]

[In]

integrate(1/cos(d*x+c)^(7/2)/(a+b*sec(d*x+c)),x, algorithm="maxima")

[Out]

integrate(1/((b*sec(d*x + c) + a)*cos(d*x + c)^(7/2)), x)

Giac [F]

\[ \int \frac {1}{\cos ^{\frac {7}{2}}(c+d x) (a+b \sec (c+d x))} \, dx=\int { \frac {1}{{\left (b \sec \left (d x + c\right ) + a\right )} \cos \left (d x + c\right )^{\frac {7}{2}}} \,d x } \]

[In]

integrate(1/cos(d*x+c)^(7/2)/(a+b*sec(d*x+c)),x, algorithm="giac")

[Out]

integrate(1/((b*sec(d*x + c) + a)*cos(d*x + c)^(7/2)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\cos ^{\frac {7}{2}}(c+d x) (a+b \sec (c+d x))} \, dx=\int \frac {1}{{\cos \left (c+d\,x\right )}^{7/2}\,\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )} \,d x \]

[In]

int(1/(cos(c + d*x)^(7/2)*(a + b/cos(c + d*x))),x)

[Out]

int(1/(cos(c + d*x)^(7/2)*(a + b/cos(c + d*x))), x)